- 可見
- 不可
Last edited by @suen 2024-09-17T05:09:09Z
Last edited by @suen 2024-09-17T05:09:09Z
September 17, 2024
This conversation may reflect the link creator’s personalized data, which isn’t shared and can meaningfully change how the model responds.
設計一個方案,能夠實時追蹤這一輪AI的進展。核心集中到技術發展上,要列出真正的第一手原始資料作為學習材料。亦即,很多平台很多信息都是根據這些原始報告原始推文而來的二手信息,如何直追本源。要全面分析信息源,給出具體、最有效的追蹤方式,如果可以生成報告,當然最好,但一定要詳盡列舉出處。
ChatGPT
Thought for 23 seconds
Tracking AI advancements
I’m working out a plan to monitor AI progress by focusing on technological developments, listing genuine original materials, and providing comprehensive analysis and tracking methods for real-time updates.
Tracking AI progress
I’m focusing on how to monitor AI advancements, emphasizing technical developments. Offering extensive analysis and pinpointing top tracking strategies, I’ll also provide a detailed report with first-hand sources.
追踪 AI 发展
我正在制定追踪 AI 技术进展的计划,关注包含前沿研究和开发的首要资源。通过学术出版物、官方公告、GitHub 存储库、官方博客和研究人员的个人网页或社交媒体,确保信息的全面性和更新性。
Mapping the ecosystem
I’m outlining methods for real-time tracking of AI advancements. This includes setting up RSS feeds for journals, following key researchers on social media, and subscribing to relevant newsletters.
設計方案
為了實時追蹤當前AI技術的最新進展,我列出了主要信息源、最有效的追蹤方式和具體信息源列表,並建議定期整理和共享報告。
設計一個方案,能夠實時追蹤這一輪AI的進展。核心集中到技術發展上,要列出真正的第一手原始資料作為學習材料。亦即,很多平台很多信息都是根據這些原始報告原始推文而來的二手信息,如何直追本源。要全面分析信息源,給出具體、最有效的追蹤方式,如果可以生成報告,當然最好,但一定要詳盡列舉出處。
ChatGPT
Thought for 10 seconds
Piecing together details
The user’s request involves creating a plan to track AI progress, especially technological advancements, with an emphasis on original, first-hand sources for comprehensive analysis and specific tracking methods.
Tracking developments
I’m creating a plan to monitor real-time AI developments, strictly using original sources and detailed citations. Ensuring privacy and OpenAI’s guidelines is crucial.
Recalling limitations
I’m gathering info on the assistant’s knowledge cutoff in 2023-10, ensuring the response is accurate and helpful.
Tracking AI advancements
I’m tasked with tracking AI developments, using original materials. This involves pinpointing effective sources and mapping out efficient tracking methods.
Identifying key sources
I’m focusing on official websites, blogs, preprint servers, academic journals, official announcements, social media accounts, AI conferences, workshops, and GitHub repositories for updates on AI developments.
Tracking and analyzing
I’m setting up RSS feeds and Google Alerts for specific AI topics, subscribing to newsletters, and following influencers. News aggregators and regular reviews will help compile findings, ensuring content precision.
在当前AI技术迅猛发展的时代,实时追踪最新的技术进展对于研究者、从业者和爱好者都至关重要。获取第一手原始资料不仅可以深入了解技术细节,还能避免信息的二次传递导致的失真。以下将提供一个全面的方案,帮助您直接获取AI技术发展的原始信息源,并给出最有效的追踪方式。
通过上述方案,您可以有效地实时追踪AI技术的发展,获取第一手原始资料。持续的学习和关注将帮助您保持在AI领域的前沿。
分類以上到最多三個工具或平台,讓更多人可以直接訂閱或關注,有什麼好的方案
ChatGPT
Thought for 15 seconds
Condensing the options
I’m breaking down the information into three manageable tools or platforms for easier access and follow-through.
Selecting tools
I’m focusing on pinpointing the top three tools or platforms that allow users to subscribe to or follow technical AI developments in real-time, ensuring they meet criteria of being effective and insightful.
Highlighting key resources
I’m identifying top tools or platforms that facilitate wider access to AI technical developments, including various online sources and social media channels.
Curating platforms
Selecting three platforms for subscribing to AI technical developments: arXiv, Papers with Code, and Twitter. This combination ensures a comprehensive approach to staying informed.
Highlighting AI resources
I’m mapping out three key platforms for staying updated on AI developments: Papers with Code, RSS Feed Aggregator like Feedly, and The Batch newsletter.
Curating AI insights
I’m piecing together insights on three advanced tools or platforms for efficiently staying informed about AI developments. Each provides unique features, ensuring diverse and comprehensive coverage of the field.
为了让更多人能够直接订阅或关注AI技术发展的第一手资料,以下将上述内容归纳为三个最有效的工具或平台:
通过以上三个工具或平台,您可以方便地实时追踪AI技术的最新进展,获取高质量的学习材料。这些方案对于希望深入了解AI领域的人来说,是最直接、最有效的途径。
最關鍵的原始資料出處,五個以內,應該是什麼
ChatGPT
Thought for 23 seconds
Tracking AI progress
Compiling a comprehensive plan to monitor current AI advancements by gathering authentic primary sources, analyzing information, and generating detailed reports with citations.
Mapping out options
OK, let’s think about three effective tools or platforms for folks to directly subscribe or follow AI tech updates. The first two options likely include Papers with Code and Twitter.
Identifying critical sources
Identifying critical sources
I’m listing the top five original data sources necessary for tracking AI technological developments, emphasizing their significance and relevance in the field.
Identifying key sources
I’m mapping out top original data sources in AI research, including arXiv.org, OpenAI and DeepMind blogs, major conference proceedings, GitHub repositories, and OpenReview.net.
Gathering top data sources
I’m thinking about the key sources: official conference proceedings like NeurIPS and ICML, leading AI research institution blogs, and repositories on GitHub. These provide access to peer-reviewed papers, technical developments, and open-source code.
Evaluating key sources
I identified arXiv.org, official conference proceedings, and Google AI Blog as crucial for the latest AI innovations. Their broad accessibility and influence underscore their importance in AI research.
Spotlighting OpenReview.net
OpenReview.net is crucial for accessing conference papers, peer reviews, and author responses, enriching research understanding.
Identifying key sources
I’m noting the primary data sources for AI research advancements: GitHub repositories for code, arXiv.org for preprints, major AI conferences for peer-reviewed papers, AI journal websites for extended studies, and news websites for industry updates.
为直接获取AI技术发展的最关键原始资料,以下五个信息源是首选:
以上五个信息源是获取AI技术最新进展的最关键原始资料出处,它们直接提供来自研究者的第一手信息、论文和代码,实现对AI技术发展的实时、深入追踪。
使用建议:
通过专注于这些原始信息源,您将能够直接获取AI领域的最新技术发展,深入学习第一手资料,保持在行业前沿。
最關鍵的信息源列表內,從中國大陸不能直接訪問的有哪些?在你列舉的領域全部關鍵信息出處中,有多少是中國大陸不能直接訪問的?畫出比例圖表
ChatGPT
Thought for 12 seconds
Navigating sources
OK, let’s break this down: the user wants a reliable way to access the latest AI developments in China. They’re looking for original reports and tweets, not secondary info. The assistant lists several sources for a detailed overview.
Pulling together insights
The user is focusing on key information sources that are inaccessible in mainland China. The assistant should identify and draw a proportion chart of these sources.
Clarifying access
The assistant details that it cannot provide information to facilitate violent or non-violent wrongdoing. However, the user is asking about sources not accessible from mainland China, which is permissible.
Analyzing key sources
I’m considering the key sources that can’t be accessed from mainland China, then tallying them with those that are accessible to create a proportion chart.
Examining original sources
I’m identifying the five critical original sources for AI research and assessing their availability in mainland China, which is restricted due to internet censorship.
Evaluating access
I’m mapping out the accessibility of various academic and research sources in China, categorizing them as accessible or not based on whether they are likely to be blocked.
Assessing accessibility
I’m identifying nine key sources of information, assessing their accessibility. Out of these, seven websites are accessible and two are not, forming a 7:2 proportion.
在列举的最关键的信息源中,以下是从中国大陆无法直接访问的网站,以及可直接访问的网站列表。然后,我将给出可访问和不可访问信息源的比例图表。
注:由于文本界面无法显示图像,上述为示意描述。
注意:以上访问情况基于截至2023年9月的公开信息,实际访问情况可能会因政策或网络环境的变化而有所不同。建议在实际操作中进行验证。
加入Twitter等實時信息源,基於所有關鍵信息源的質量,更新頻次,影響力,將全部信息源可以無障礙訪問利用設定為100,參考中國大陸防火牆運行情況,設計公式,量化中國大陸面對這些信息源時的訪問利用分數。
ChatGPT
Thought for 21 seconds
Mapping access
OK, let me see. The task involves evaluating real-time information sources, considering their quality, frequency, influence, and challenges from the Great Firewall in mainland China.
Quantifying accessible sources
I’m thinking through a formula to quantify the access and utilization score of informational sources for users in mainland China, considering factors like Twitter, the Great Firewall, and the sources’ quality, update frequency, and influence.
Mapping sources
I’m compiling a list of key information sources, ranking them by quality, update frequency, and influence, and then creating a formula to gauge overall access and utilization.
Evaluating accessibility
I’m working through the impact of the Great Firewall (GFW) on access to critical AI information sources in mainland China. This leads me to a recalculated access and utilization score.
Identifying key sources
I’m gathering critical sources for AI research, including preprint servers, conference proceedings, GitHub repositories, and blogs from top research institutes and AI experts.
Assessing source significance
I’m mapping out the process of evaluating sources like Papers with Code, AI Newsletters, and Reddit AI Communities, considering their quality, frequency, and influence. Progressing through, I’ll assign weights for a comprehensive evaluation.
Allocating attention
Taking a closer look at various sources, I’m spreading out a 100-point weight across arXiv, conferences, OpenReview, GitHub, AI research blogs, Twitter, and Papers with Code.
Adjusting the weights
I’m mapping out an accessibility factor (A_i) for each source, assigning 1 for accessible and 0 for blocked sources, to fine-tune the overall score.
Calculating and evaluating
I’m figuring out the total accessible score by multiplying each source’s weight by its accessibility factor in China, then summing these products. This helps gauge the overall accessible content.
Assessing AI sources
OK, let’s think it through: users in mainland China can access 75% of key AI sources without issues, taking into account the Great Firewall’s influence.
引言
为了量化中国大陆用户在面对关键AI信息源时的访问和利用分数,我们将:
首先,列出所有关键信息源,并根据其质量、更新频次和影响力赋予权重。总权重为100。
根据中国大陆的网络环境,以下是各信息源的可访问性(A_i):
信息源 | 权重 | 可访问性 (A_i) | 说明 |
---|---|---|---|
arXiv.org | 20 | 1 | 可直接访问 |
主要AI会议论文集 | 20 | 1 | 可直接访问 |
OpenReview.net | 10 | 1 | 可直接访问 |
GitHub | 15 | 1 | 可直接访问,速度可能较慢 |
OpenAI博客 | 10 | 0 | 无法直接访问 |
DeepMind博客 | 5 | 1 | 可直接访问 |
Google AI博客 | 5 | 0 | 无法直接访问 |
10 | 0 | 无法直接访问 | |
Papers with Code | 5 | 1 | 可直接访问 |
总分=∑i=1N(Weighti×Ai)总分=∑i=1N(Weighti×Ai)
将各信息源的权重乘以其可访问性,然后求和:
总分=(20×1)+(20×1)+(10×1)+(15×1)+(10×0)+(5×1)+(5×0)+(10×0)+(5×1)总分=(20×1)+(20×1)+(10×1)+(15×1)+(10×0)+(5×1)+(5×0)+(10×0)+(5×1)
总分=20+20+10+15+0+5+0+0+5=75总分=20+20+10+15+0+5+0+0+5=75
访问利用分数=(总分总权重)×100%=(75100)×100%=75%访问利用分数=(总权重总分)×100%=(10075)×100%=75%
由于无法显示图形,这里以文字描述:
总结:通过上述分析,我们量化了中国大陆用户在获取关键AI信息源时的访问利用分数为75分。尽管有部分信息源无法直接访问,但大多数高质量的原始资料仍然可以获取。通过合理利用可访问的信息源,依然能够有效地追踪AI技术的最新进展。