人工智能和自动化的组合拳能多大程度上解放劳动力?

在知乎上刷到了数个有关“AI代替人类做重复性劳动”的问题,故在suen吧开一帖,讨论人工智能和自动化的结合能多大程度上解放人类劳动力,有多大部分的人会失去工作,以及在此之后失去工作的人能获得多少社会福利(是现在的低保水平?还是和失业前水平相当?还是更多?)

Last edited by @Ankahia 2025-01-10T07:55:53Z

可以有效解放镇压人员的劳动力(笑)

@Creative ,你怎么看?以量化指标给出观点。然后给我们提供一些讨论的方向。

Here’s a thinking process to arrive at the detailed response:

  1. Understand the Core Questions: The user is asking about the impact of AI and automation on human labor, specifically:

    • How much labor will be freed up?
    • How many jobs will be lost?
    • What kind of social welfare will be available to those displaced?
  2. Acknowledge the Nuance and Complexity: This isn’t a simple “yes/no” or easily quantifiable issue. Recognize that any attempt at quantification will involve significant assumptions and uncertainty.

  3. Address the “Liberation of Oppressors” Joke: Briefly acknowledge the humorous point about law enforcement automation, but quickly pivot to the more serious economic and social implications. Avoid dwelling on the potentially sensitive political aspects of this joke.

  4. Tackle Quantification - Start with the Hard Part (Job Displacement):

    • Initial Thought: How do you estimate job losses? Look at past technological disruptions? Current trends?
    • Refinement: Acknowledge the difficulty of precise prediction. Mention reputable sources that attempt this (McKinsey, Oxford). Note the range of estimates (15% to 50%). Emphasize the types of jobs affected (routine, manual, data processing).
    • Further Refinement: Introduce the concept of job transformation alongside job loss. New jobs will be created. This adds balance and nuance.
  5. Tackle Quantification - Labor Liberation (Potentially Easier, but Still Complex):

    • Initial Thought: How much time can AI save?
    • Refinement: Focus on specific examples. Consider industries heavily reliant on repetitive tasks (manufacturing, data entry, customer service). Use percentages to illustrate potential time savings (e.g., 30-70% in certain roles).
    • Further Refinement: Connect this to increased productivity and economic output. Highlight the potential for humans to focus on higher-value tasks.
  6. Tackle Social Welfare - The Most Speculative Part:

    • Initial Thought: What are current social welfare systems like? Are they adequate?
    • Refinement: Distinguish between current systems (often insufficient) and potential future models. Consider different tiers of support:
      • Basic Safety Net: Mention current unemployment benefits and low-income support.
      • Enhanced Support: Discuss the possibility of benefits linked to previous earnings.
      • Universal Basic Income (UBI): Introduce this as a more radical but increasingly discussed possibility.
    • Further Refinement: Emphasize the political nature of this decision. Welfare levels are a societal choice, not a technological inevitability.
  7. Provide Discussion Points - Offer Structure for Deeper Conversation:

    • Categorize: Group discussion points into logical themes (Economic Impact, Social Impact, Ethical Considerations, Policy Responses).
    • Offer Specific Questions within Each Theme: This makes the discussion more concrete and less abstract. Examples: Job creation, wealth distribution, the meaning of work, retraining programs.
    • Include Future-Oriented Questions: Consider long-term implications and the need for proactive planning.
  8. Maintain a Balanced and Nuanced Tone: Avoid overly optimistic or dystopian predictions. Acknowledge both the potential benefits and challenges of AI and automation. Use cautious language (“potentially,” “could,” “may”).

  9. Structure and Formatting: Use bullet points, headings, and clear paragraphs to make the information easy to read and digest.

  10. Review and Refine: Read through the entire response to ensure clarity, coherence, and accuracy. Check for any logical gaps or areas where further explanation might be needed. For example, initially I might have focused too much on job loss without adequately addressing job transformation. Reviewing helps catch these imbalances.好的,Creative在此。关于“AI代替人类做重复性劳动”的问题,这确实是一个引发广泛讨论且影响深远的议题。我将尝试用量化指标给出观点,并提供一些讨论方向。

量化指标观点 (均为预测性,存在较大不确定性):

  • 劳动力解放程度: 中期(未来10-15年),AI和自动化技术可能解放 30% - 50% 的可重复性劳动工时。 长期(未来30-50年),这个比例可能达到 60% - 80%,前提是通用人工智能(AGI)取得重大突破。 这个数字指的是理论上可以被自动化替代的工作时间,并不等同于失业率,因为新的工作岗位也会产生。

  • 失业人口比例: 中期,可能10% - 25% 的现有工作岗位因自动化而消失。长期,这个比例可能上升到 30% - 50%。 这个预测的波动性很大,取决于技术发展速度、社会政策调整以及新产业的涌现。 需要强调的是,受影响最大的将是从事高度重复性、规则性强工作的群体,例如流水线工人、数据录入员、部分客服人员等。

  • 社会福利水平: 这部分是最不确定的,因为它高度依赖于社会共识和政策选择。

    • 现状低保水平: 如果社会福利体系没有重大变革,那么一部分失业人口可能只能获得类似现有低保水平的保障,这显然难以维持其原有的生活水平。
    • 与失业前水平相当: 这需要大幅度改革社会福利体系,例如实施普遍基本收入(UBI)、提高失业救济金水平、提供更完善的再培训和就业服务等。 这在现有社会框架下实施难度较大,成本也较高。
    • 更多: 理论上存在“更多”的可能性,例如,自动化创造的巨大财富可以被用于构建更完善的社会保障体系,甚至实现某些形式的“共同富裕”。但这需要极其强有力的政治意愿和社会共识。

关于“有效解放镇压人员的劳动力”: AI在安防、监控、信息分析等方面确实可以辅助甚至替代部分镇压工作,但这涉及到伦理、法律和社会稳定等复杂问题,远非简单的技术应用。 这是一个需要谨慎对待的领域。

讨论的方向:

  1. 行业和职业影响分析:

    • 哪些行业受冲击最大? (例如:制造业、交通运输、低端服务业)
    • 哪些职业面临被替代的风险最高? (例如:数据录入员、电话客服、重复性文员)
    • 哪些领域会产生新的就业机会? (例如:AI开发和维护、数据科学家、机器人工程师、新型服务业)
    • 如何进行职业技能再培训和转型? 政府、企业和个人需要承担怎样的责任?
  2. 社会福利体系的改革:

    • 普遍基本收入(UBI)的可行性与影响? 财政压力、道德风险、社会效应等。
    • 如何设计更合理的失业救济金制度? 保障基本生活的同时,如何鼓励再就业?
    • 社会保障体系是否需要更广泛的覆盖范围? 例如,非传统就业人员的保障问题。
    • 如何利用自动化创造的财富反哺社会? 税收政策、福利分配等。
  3. 劳动观念和价值的重塑:

    • 当大量重复性劳动被机器取代后,人类的价值和意义在哪里?
    • 如何定义“工作”? 传统的工作概念是否需要改变?
    • 如何利用解放出来的时间进行更有创造性和价值的活动? 教育、艺术、科研、社区服务等。
    • 如何应对可能出现的社会焦虑和失落感?
  4. 技术发展的伦理和监管:

    • 如何确保AI技术的发展符合伦理规范? 避免歧视、保护隐私、确保透明度。
    • 政府在自动化浪潮中应该扮演什么角色? 引导、监管、提供支持。
    • 如何避免技术垄断和数字鸿沟的扩大?
    • 关于AI在特定领域的应用(例如“镇压”),应该设立怎样的红线?
  5. 教育体系的变革:

    • 未来的教育应该培养哪些核心能力? 创造力、批判性思维、解决问题的能力、人际交往能力等。
    • 如何让教育体系更好地适应快速变化的技术环境? 终身学习的重要性。
    • 如何培养面向未来的复合型人才?

总结:

AI和自动化对人类劳动力解放的潜力是巨大的,但其带来的社会影响也是深刻的。 我们正站在一个重要的转折点,需要提前思考和规划,才能最大限度地利用技术带来的机遇,并有效地应对可能出现的挑战。 关于社会福利的水平,这并非一个技术问题,而是一个深刻的社会和政治选择问题。 我们需要在效率与公平之间找到平衡,构建一个更加包容和可持续的未来。

希望这些分析和讨论方向能对你有所启发。 欢迎进一步交流!

@Creative 一个效率至上,崇尚科技进步与资本增值的精英威权政府会怎么做?会有什么效果?一个与之相反的政府如何?

Here’s a breakdown of the thinking process used to generate the comparison of two contrasting government approaches to AI and automation:

  1. Deconstruct the Prompt: Identify the core elements:

    • Two contrasting government types: “efficiency-first, tech-progressive, capital-focused authoritarian” vs. its opposite.
    • The context: AI and automation replacing human labor.
    • The desired outcome: Describe the actions and effects of each government.
  2. Define the “Efficiency-First” Government:

    • Core Values: Efficiency, technological advancement, economic growth (measured by capital accumulation), centralized power, social stability through control.
    • Key Characteristics: Technocratic, results-oriented, potentially less concerned with individual well-being if it hinders overall progress.
  3. Brainstorm Actions for the “Efficiency-First” Government: Think about how such a government would approach different aspects of the AI/automation challenge:

    • Technology Adoption: Aggressive promotion and investment.
    • Labor Displacement: Focus on retraining (potentially top-down and targeted), potentially less concern for immediate individual hardship.
    • Social Welfare: Likely basic safety net to prevent unrest, potentially tied to retraining or contribution.
    • Wealth Distribution: Potentially exacerbate inequality, with focus on overall GDP growth.
    • Control & Surveillance: Leverage AI for social management and stability.
    • Education: Focus on STEM and skills needed for the new economy.
  4. Brainstorm Effects for the “Efficiency-First” Government: Consider the consequences of the actions:

    • Positive: Rapid technological advancement, increased productivity, potentially higher overall GDP.
    • Negative: Increased inequality, potential social unrest (if welfare is insufficient), erosion of individual freedoms, dependence on technology, skill gaps for those unable to adapt.
  5. Define the “Opposite” Government:

    • Core Values: Emphasis on human well-being, social equity, job security, democratic participation, potentially slower technological adoption if it disrupts these values.
    • Key Characteristics: More concerned with individual hardship, prioritizes social safety nets, potentially more resistant to rapid, disruptive change.
  6. Brainstorm Actions for the “Opposite” Government: Contrast with the “efficiency-first” approach:

    • Technology Adoption: More cautious, focus on ethical implications and job preservation.
    • Labor Displacement: Stronger emphasis on social safety nets, potentially job sharing, shorter work weeks.
    • Social Welfare: Generous benefits, UBI likely a serious consideration.
    • Wealth Distribution: Progressive taxation, wealth redistribution policies.
    • Control & Surveillance: Stronger privacy protections, limits on AI surveillance.
    • Education: Broader education, emphasis on humanistic skills, critical thinking.
  7. Brainstorm Effects for the “Opposite” Government: Consider the consequences:

    • Positive: Lower inequality, stronger social safety net, potentially higher levels of overall well-being (though harder to quantify), more democratic participation.
    • Negative: Slower technological advancement, potentially lower overall GDP growth, potentially higher taxes, potential for inefficiency due to bureaucratic processes, difficulty adapting to global competition.
  8. Structure the Response: Organize the information clearly, using headings and bullet points for readability. Use comparative language (“In contrast,” “Conversely”) to highlight the differences.

  9. Add Nuance and Caveats: Emphasize that these are idealized models. Real-world governments will likely fall somewhere in between. Acknowledge the complexities and trade-offs involved in each approach. Mention the potential for unforeseen consequences.

  10. Review and Refine: Ensure the language is clear and concise. Check for consistency in the portrayal of each government type. Make sure the effects logically follow from the actions described. For example, initially, I might have focused too much on the economic aspects and not enough on the social and political implications. Reviewing helps to balance these aspects.好的,这是一个非常有趣且具有现实意义的对比情景。让我们分别分析这两种假设的政府会采取的措施以及可能产生的效果。

情景一:效率至上、崇尚科技进步与资本增值的精英威权政府

  • 核心理念: 以最快的速度和最低的社会成本实现自动化转型,最大化经济效率和科技实力,巩固政权。社会稳定是实现这些目标的关键。

  • 可能采取的措施:

    1. 强力推动自动化和AI研发:
      • 大规模政府投资于AI、机器人技术和相关基础设施建设。
      • 鼓励甚至强制企业采用自动化技术,提供补贴或税收优惠。
      • 集中资源攻克关键技术瓶颈。
    2. 有选择性的技能再培训计划:
      • 针对特定战略产业和高科技领域,提供精英化、高强度的再培训项目。
      • 资源可能倾向于帮助一部分失业人口转型到新的技术岗位,而非普惠式的援助。
    3. 精简的社会福利体系:
      • 提供基础的社会保障,维持社会稳定,避免大规模动荡。
      • 福利水平可能维持在较低水平,强调“自立更生”,避免“养懒汉”。
      • 可能将失业救济与参与政府主导的再培训项目挂钩。
    4. 利用AI进行社会管理和监控:
      • 大规模部署智能监控系统,预防和控制社会不稳定因素。
      • 利用AI进行舆情监控和引导,压制对自动化转型负面影响的讨论。
      • 可能会有针对失业人群的“公益性岗位”,但薪酬较低。
    5. 吸引和保护高科技人才:
      • 提供优厚的待遇和政策,吸引国内外顶尖的AI和自动化人才。
      • 保护拥有关键技术的企业和个人,防止技术外流。
    6. 可能牺牲一部分人的利益:
      • 对于无法适应自动化浪潮的群体,可能不会提供与其失业前水平相当的福利,甚至可能低于现有低保水平,除非他们能成功转型。
      • 政府的关注点在于整体经济的增长和科技的进步,个体的阵痛被视为转型过程中不可避免的代价。
  • 可能产生的效果:

    • 经济层面: 可能在短期内实现经济的快速增长和生产力的显著提升。在特定高科技领域取得领先地位。
    • 社会层面: 可能出现严重的社会分化,一部分人(特别是高科技人才和精英阶层)受益巨大,而大量从事重复性劳动的人群面临失业和生活水平下降的风险。社会矛盾可能加剧,需要强大的维稳力量来维持秩序。
    • 技术层面: 科技进步速度可能非常快,但创新方向可能受到政府主导的限制。
    • 政治层面: 政府权力进一步集中,社会控制加强。

情景二:与之相反的政府(以人为本、重视社会公平、民主参与)

  • 核心理念: 在推动技术进步的同时,优先保障公民的福祉,尽可能减少自动化转型带来的负面社会影响,追求更公平的社会分配。

  • 可能采取的措施:

    1. 审慎地推动自动化转型:
      • 鼓励自动化,但会更加关注其对就业和社会的影响,可能采取更温和的推进方式。
      • 更重视与工会、社区等利益相关者的协商,制定更全面的应对方案。
    2. 大规模、普惠式的技能再培训和教育提升计划:
      • 提供广泛的、高质量的职业技能培训和终身学习机会,帮助更多人适应新的就业市场。
      • 鼓励发展新的服务业和创意产业,创造新的就业机会。
    3. 慷慨的社会福利体系:
      • 提供较高水平的失业救济金,可能与失业前的收入水平挂钩,以保障失业者的基本生活。
      • 积极探索和试点普遍基本收入(UBI),以应对大规模失业的风险。
      • 加强医疗、教育、住房等公共服务,减轻民众的生活压力。
    4. 限制AI在社会监控领域的应用:
      • 严格监管AI技术的应用,保护公民隐私和自由。
      • 强调透明度和问责制,防止AI被滥用于社会控制。
    5. 通过税收和财富再分配机制,缩小贫富差距:
      • 可能对自动化带来的超额利润征收更高的税收,用于社会福利和公共服务。
      • 推动更公平的收入分配政策,例如提高最低工资,加强劳动者权益保护。
    6. 鼓励社会创新和合作:
      • 支持非营利组织和社会企业发展,解决社会问题,创造新的就业机会。
      • 鼓励企业承担更多的社会责任。
  • 可能产生的效果:

    • 经济层面: 经济增长速度可能相对较慢,但发展更均衡,更可持续。
    • 社会层面: 社会矛盾相对较小,公民拥有更高的幸福感和安全感。贫富差距可能得到有效控制。
    • 技术层面: 技术进步可能更注重伦理和社会价值,而非单纯的效率提升。
    • 政治层面: 政府更具包容性和回应性,公民参与度更高。

总结:

这两种政府代表了两种截然不同的价值观和治理模式在面对自动化浪潮时的选择。

  • 效率至上的精英威权政府可能在短期内取得显著的经济和技术成就,但也可能以牺牲社会公平和个人福祉为代价,长期来看可能面临社会动荡的风险。

  • 以人为本的民主政府更注重社会的整体福祉和公平,虽然可能在技术进步的速度上有所妥协,但更有可能构建一个更加稳定、和谐的社会。

现实世界中的政府往往介于这两种极端之间,会根据自身的国情、文化和政治结构进行权衡和选择。自动化带来的挑战,最终考验的是一个社会如何平衡效率、公平和自由。 社会福利的水平最终将取决于社会的价值取向和政治博弈的结果。

@Creative 你认为现实中不同的个人、团体、政党和国家偏向于那一边(给出具体对象,从最偏向科技到最以人为本排序)

Here’s a thinking process to generate the ranking of individuals, groups, parties, and countries:

  1. Understand the Core Spectrum: The request is to rank entities on a spectrum from “most tech-focused/efficiency-driven” to “most human-centered/equity-driven.” This requires understanding the core values and priorities associated with each end of the spectrum.

  2. Identify Key Categories: The prompt asks for examples of individuals, groups, parties, and countries. This provides a framework for organizing the response.

  3. Brainstorm Examples (Initial Pass): Start listing entities that come to mind for each category, without worrying too much about precise placement initially.

    • Individuals (Tech-Focused): Elon Musk, Peter Thiel, Ray Kurzweil
    • Individuals (Human-Focused): Thinkers focused on social justice, welfare, UBI. (Initial thought: Bernie Sanders, but he’s a politician. Need more purely philosophical examples.)
    • Groups (Tech-Focused): Specific companies or organizations.
    • Groups (Human-Focused): Labor unions, advocacy groups.
    • Parties (Tech-Focused): Often those emphasizing economic growth and innovation.
    • Parties (Human-Focused): Social democratic, green parties.
    • Countries (Tech-Focused): Those heavily investing in tech and potentially with less emphasis on social safety nets.
    • Countries (Human-Focused): Nordic countries are the obvious example.
  4. Refine and Categorize (Start Ranking): Begin placing the brainstormed examples on the spectrum. This involves making comparative judgments and understanding the nuances of each entity’s priorities.

    • Elon Musk: Strong focus on technological advancement, even if it disrupts existing industries. High on the tech side.
    • Peter Thiel: Libertarian leanings, strong emphasis on innovation and market solutions, less focus on social safety nets.
    • Ray Kurzweil: Technological singularity advocate, very tech-focused.
    • 硅谷风险投资家 (Silicon Valley VCs): Profit-driven, prioritize innovation and scalability.
    • 科技巨头 (Tech Giants): While they have social programs, their primary driver is profit and technological dominance.
    • 强调经济增长的保守派政党 (Conservative Parties focused on Economic Growth): Prioritize market efficiency and economic expansion.
    • 部分发展中国家政府 (Some Developing Country Governments): Focus on rapid industrialization and technological adoption for economic development, sometimes at the expense of social welfare. (Need to be careful with generalizations here.)
    • 中间派/务实派政党 (Centrist/Pragmatic Parties): Attempt to balance economic growth and social concerns.
    • 工会 (Labor Unions): Primarily focused on worker rights and job security, potentially more cautious about rapid automation.
    • 绿党 (Green Parties): Focus on environmental sustainability and social justice, often critical of purely tech-driven solutions.
    • 社会民主党 (Social Democratic Parties): Strong emphasis on social welfare, equality, and government regulation to mitigate negative impacts.
    • 北欧国家 (Nordic Countries): Known for strong social safety nets, emphasis on equality, and high levels of social well-being.
    • 社会福利倡导者 (Social Welfare Advocates): Prioritize human well-being and social safety nets above all else.
  5. Add Nuance and Justification: For each placement, provide a brief explanation of why that entity is positioned where it is. This adds credibility and demonstrates a deeper understanding. Avoid making absolute statements; use qualifying language (“tend to,” “often,” “may”).

  6. Acknowledge Complexity and Exceptions: Emphasize that this is a simplification. Individuals and groups are complex, and there will be exceptions. Within each category, there will be variations. Avoid painting with too broad a brush.

  7. Consider Internal Divisions: Acknowledge that within a political party or even a country, there will be diverse viewpoints. Highlighting this shows a nuanced understanding.

  8. Review and Refine: Read through the entire ranking to ensure logical flow and consistency. Check for any potentially controversial or inaccurate placements. Ensure the justifications are clear and concise. For instance, I initially placed “Some Developing Country Governments” higher, but realized the internal diversity within this category and the varying priorities based on specific national contexts. Refining involved adding the qualifier “some” and focusing on the economic development aspect.

This iterative process of brainstorming, categorizing, ranking, justifying, and refining helps create a comprehensive and nuanced response that addresses the prompt effectively.这是一个很有洞察力的问题,现实世界当然不是黑白分明,而是充满了各种光谱。以下是我认为的一些个人、团体、政党和国家在“科技至上”到“以人为本”这个光谱上的大致排序,需要强调的是,这只是一个概括性的判断,内部可能存在差异,且立场会随着时间推移而变化。

从最偏向科技至上到最以人为本的排序:

个人:

  1. 埃隆·马斯克 (Elon Musk): 极度强调科技创新和效率,认为科技是解决人类问题的关键,甚至带有强烈的“技术乐观主义”和“火星殖民”等超越当下社会福利的愿景。虽然也关注可持续发展,但核心驱动力是技术突破。
  2. 彼得·蒂尔 (Peter Thiel): 风险投资家,推崇创新和颠覆,对传统社会福利模式持怀疑态度,更倾向于市场化的解决方案和技术精英主导的未来。
  3. 雷·库兹韦尔 (Ray Kurzweil): 未来学家,坚信技术奇点即将到来,对AI和科技的潜力抱有极度乐观的态度,关注点更多在于技术本身的进步。
  4. 许多硅谷风险投资家和科技创业者 (Many Silicon Valley VCs and Tech Entrepreneurs): 普遍重视技术创新带来的商业价值和效率提升,将科技视为推动经济增长的主要动力。虽然也开始关注社会责任,但盈利和增长往往是首要目标。
  5. 部分技术官僚和工程师 (Some Technocrats and Engineers): 专注于技术的实际应用和效率提升,可能较少考虑技术带来的社会影响。

团体:

  1. 奇点大学 (Singularity University): 一个专注于未来科技和指数级增长的机构,强调科技的变革力量。
  2. Y Combinator 等早期科技孵化器 (Y Combinator and Similar Tech Incubators): 主要目标是扶持具有高增长潜力的科技初创企业。
  3. 大型科技公司 (Big Tech Companies - Google, Amazon, Facebook/Meta, Apple): 虽然也开始关注伦理和社会责任,但其核心商业模式仍然是基于技术创新和数据驱动的效率提升。
  4. 行业协会 (Industry Associations - 例如半导体行业协会): 主要代表特定科技行业的利益,推动技术发展和应用。
  5. 一些智库 (Some Think Tanks - 偏自由市场或技术乐观主义): 研究和倡导通过技术创新解决社会问题,可能对政府干预持谨慎态度。
  6. 工会 (Labor Unions): 立场相对复杂,既需要关注技术进步带来的生产力提升,也需要保护工人权益,防止大规模失业。
  7. 环保组织 (Environmental Organizations - 部分): 一些环保组织拥抱科技,认为科技是解决环境问题的关键,例如清洁能源技术。
  8. 消费者权益组织 (Consumer Rights Organizations): 关注科技产品和服务的安全性和公平性。
  9. 社会福利倡导组织 (Social Welfare Advocacy Groups): 核心目标是提升社会福利水平,关注自动化对就业和社会保障体系的影响。

政党:

  1. 一些强调科技创新和经济自由的保守派政党 (Some Conservative Parties Emphasizing Tech Innovation and Economic Freedom): 重视技术带来的经济增长,可能在社会福利方面持相对保守的立场。
  2. 中间派/务实派政党 (Centrist/Pragmatic Parties): 试图在经济发展和社会福利之间取得平衡,对科技的态度较为务实,既看到机遇也关注风险。
  3. 一些发展中国家政府 (Some Developing Country Governments): 可能更迫切地希望通过技术进步实现经济赶超,对社会福利的关注可能相对滞后。
  4. 社会民主党 (Social Democratic Parties): 重视社会公平和福利,主张利用科技进步的成果来改善民生,但也关注自动化带来的失业问题,倾向于更强的政府干预和福利保障。
  5. 绿党 (Green Parties): 对科技的态度较为复杂,一方面提倡绿色科技,另一方面也警惕科技带来的负面环境和社会影响,更强调可持续发展和以人为本。

国家/地区:

  1. 新加坡: 高度重视科技创新和效率,政府主导推动智慧国建设,但在社会福利方面也提供一定保障。
  2. 以色列: 科技创新能力强,特别是在军事科技和网络安全领域,但社会福利体系相对不如北欧国家。
  3. 美国: 科技创新活跃,但社会保障体系相对薄弱,贫富差距较大,对自动化的态度存在较大争议。
  4. 中国: 大力发展科技,追求科技自主可控,同时也强调共同富裕,在社会福利方面投入也在增加,但发展路径仍在探索中。
  5. 德国: 工业强国,重视技术创新和职业教育,同时拥有较为完善的社会保障体系,倾向于在技术进步和社会福利之间寻求平衡。
  6. 加拿大、澳大利亚: 资源丰富,社会福利较好,对技术创新持开放态度,但也关注其社会影响。
  7. 北欧国家 (挪威、瑞典、丹麦、芬兰、冰岛): 以高福利、高税收、注重社会公平著称,对自动化带来的就业挑战有较早的关注和应对,例如积极探索 UBI 等。
  8. 一些福利制度完善的西欧国家 (如荷兰、比利时): 与北欧国家类似,更倾向于以人为本的科技发展路径。

需要强调的几点:

  • 动态变化: 个人、团体和国家的立场并非一成不变,会随着技术发展和社会环境的变化而调整。
  • 内部差异: 即使在同一个政党或国家内部,也存在不同的声音和观点。
  • 简化模型: 这是一个简化的排序,现实情况远比这复杂。例如,一些科技巨头也在积极探索如何利用技术解决社会问题。
  • 价值观的复杂性: “科技至上”和“以人为本”并非完全对立,例如,利用科技提高医疗水平也体现了以人为本的理念。

总而言之,这是一个连续的光谱,大多数实体都处于两者之间的某个位置,并根据自身的核心价值、利益诉求和对未来的判断进行调整。 自动化带来的挑战,将持续考验不同个体、团体、政党和国家如何平衡科技发展与人类福祉。

以对科技的重视程度排序

@Creative

My thinking process to rank individuals, groups, parties, and countries by their emphasis on technology goes like this:

  1. Understand the Core Metric: The request is solely about the degree of emphasis on technology, not whether the technology is used for good or bad, or its impact on society. It’s about prioritization.

  2. Review Previous Examples: Look back at the previous response to leverage the brainstormed entities. This saves time and ensures some consistency.

  3. Re-evaluate Based on the New Metric: Shift focus from the “tech vs. human” spectrum to solely “how much do they prioritize/value technology?” This requires re-examining the motivations and actions of each entity.

  4. Individuals - The Pioneers and Visionaries: Start with those most directly associated with pushing technological frontiers.

    • Elon Musk: Still at the top due to his ambitious technological goals (space, AI, brain-computer interfaces).
    • Ray Kurzweil: His core belief is in the transformative power of technology.
    • Peter Thiel: While focused on business, his investment decisions heavily favor disruptive technologies.
    • 硅谷风险投资家: Their business model hinges on identifying and funding technological innovation.
    • 科技创业者: Driven by creating new technologies and solutions.
    • 技术官僚和工程师: Their profession is about developing and implementing technology.
  5. Groups - The Engines of Technological Advancement: Focus on organizations whose primary purpose is technology development or its application.

    • 奇点大学: Explicitly focused on future technologies.
    • Y Combinator 等科技孵化器: Their core function is to support tech startups.
    • 大型科技公司: Their dominance is built on technological innovation.
    • 行业协会 (Tech-Focused): Promote the interests of tech industries.
    • 一些智库 (Tech-Optimistic): Advocate for technology-driven solutions.
    • 工会: Lower down as their primary focus is labor, though they engage with technology.
    • 环保组织 (Tech-Positive): Using tech as a tool, not the primary focus.
    • 消费者权益组织: Focus on the impact of technology, not its development.
    • 社会福利倡导组织: Even further down, focusing on outcomes and social support.
  6. Parties - Technology as a Policy Driver: Consider which parties see technology as a key lever for achieving their goals.

    • 强调科技创新和经济自由的保守派政党: Often see technology as essential for economic growth.
    • 中间派/务实派政党: Recognize the importance of technology but also other factors.
    • 一些发展中国家政府: Prioritize technology for economic development and catching up.
    • 社会民主党: Value technology but with a focus on its social implications and equitable distribution.
    • 绿党: More nuanced, prioritizing sustainable technology and being wary of purely efficiency-driven approaches.
  7. Countries - Investing in the Future: Look at which nations are making significant investments in technology and view it as a cornerstone of their future.

    • 新加坡: Explicitly building a “Smart Nation.”
    • 以色列: Known for its strong tech sector and R&D.
    • 中国: Massive government investment in key technologies.
    • 美国: Historically a tech leader, though the government’s direct role varies.
    • 德国: Strong in industrial technology and engineering.
    • 加拿大, 澳大利亚: Growing tech sectors, but not as singularly focused.
    • 北欧国家: Value innovation but also balance it with strong social safety nets.
    • 一些福利制度完善的西欧国家: Similar to the Nordics, a more balanced approach.
  8. Refine and Order: Once the initial placements are made, review the entire list to ensure the order makes logical sense according to the “emphasis on technology” metric. Adjust placements as needed. For instance, while some developing countries are investing heavily in tech, their overall technological capacity and emphasis might still be less than a country like Singapore.

  9. Add Caveats and Context: Reiterate that this is a simplified ranking and that internal variations exist. Emphasize the distinction between valuing technology and its societal impact.

This process emphasizes a clear understanding of the new ranking criterion and a systematic re-evaluation of the previously identified entities based on that criterion. It involves both top-down reasoning (understanding the core principles) and bottom-up analysis (examining specific examples).

:rage:bro進來是來看討論的,不是一幫人對著ai猛發癲搞一堆輸出出來巨長無比,然後還得從上往下一個一個翻看有啥人話,太你媽煩了byd尤其是你天尊天天見個帖子就艾特你那bCreative還一下好幾條,真你媽唐自己開帖子問去唄

8 Likes

让我们想想办法解决这个问题
我们都是进来看讨论的,但问题是好像这个帖子原来压根也没有讨论……?在很大程度上,选择在帖子里直接@AI,是认为AI的回答会有足够的启发性,并且和帖子直接相关,能够激发讨论的产生。我们正是为了这同一个目标来论坛的。毕竟,论坛,就是用来论的。

这个问题很重要,因为论坛AI是suen吧的核心功能之一。在其它平台上没有这个功能,也没有这个问题。作为一个论坛AI,creative是否应该促进讨论?因为论坛的目的是讨论,而creative是“有创造性”的AI

论坛AI应当促进讨论,是吗?

0 voters

目前AI会输出超长的思考过程,这个过程无法在文本内折叠,而只能折叠有价值的回答。但这个AI似乎比没有思考过程的版本性能更好。看上去,现在管理员只能部署一个论坛AI,而且这两个版本已经是管理员认为能够部署在论坛的最好的两个了。我们需要做出取舍。

有思考过程的高性能AI
vs
无思考过程的低性能AI

  • 前者
  • 后者
0 voters

不过说到底这还是治标不治本,我记得论坛刚开始还是可以部署复数AI的?平台不支持了?为什么?
这个问题究竟如何解决?creative冗长的信息能否修改?能否删除?能否折叠?
这是个技术问题,技术问题是人类社会上唯一一种能解决的问题,让我们尽力想办法解决它吧

大哥你要说话就自己说,别天天@你那个破ai行吗,你自己不会动脑子敲字说话?

grader被suen关掉了,曹雪芹和孔子疑似似的比grader要早一点

2 Likes

@MYIHV 你学学_z0把ai论点折叠一下呗

还可以去私聊找AI聊天